摘要:鑒于鍋爐、壓力容器和管道涉及到許多重要的工業部門,其中包括火力、水力、風力,核能發電設備,石油化工裝置,煤液化裝置、輸油、輸氣管線,飲料、乳品加工設備,制藥機械,飲用水處理設備和液化氣儲藏和運輸設備等,焊接技術的內容是相當廣泛的。本文因篇幅所限,僅就鍋爐、壓力容器和管道用鋼,先進的焊接方法和焊接過程機械化和自動化三方面的新發展作如下概括的介紹。
關鍵詞:壓力容器,安裝監督,工作探討
一、壓力容器用鋼的新發展
1、近年來,壓力容器用鋼的發展與鍋爐用鋼不同,其主攻方向是提高鋼的純凈度,即采用各種先進的冶煉技術,最大限度地降低鋼中的有害雜質元素,如硫、磷、氧、氫和氮等的含量。這些冶金技術的革新,不僅明顯地提高了鋼的沖擊韌性,特別是低溫沖擊韌性,抗應變時效性、抗回火脆性、抗中子幅照脆化性和耐蝕性,而且可大大改善其加工性能,包括焊接性和熱加工性能。
2、對比采用常規冶煉方法和現代熔煉方法軋制的16MnR鋼板的化學成分和不同溫度下的缺口沖擊韌度和應變時效后的沖擊韌性,數據表明,超低級的硫、磷、氮含量顯著地提高了普通低合金鋼的低溫沖擊韌度和抗應變時效性。
3、高純凈化對深低溫用9%Ni鋼的極限工作溫度(-196℃)下的缺口沖擊韌度也起到相當良好的作用,按美國ASTM A353和A553(9%Ni)鋼標準,該鋼種在-196℃沖擊功的保證值為27J.但按大型液化天然氣(LNG)儲罐的制造技術條件,9% Ni鋼殼體-196℃的沖擊功應 70J,相差2.6倍之多。這一問題也是通過9% Ni鋼的純凈化處理而得到完滿的解決。同時還大大改善了9% Ni鋼的焊接性。焊接不必預熱,焊后亦無須熱處理。對于厚度30mm以下的9%Ni鋼,焊前不必預熱,焊后亦無需熱處理。這對于大型(10萬m3以上)LNG儲罐的建造,具有十分重要的意義。
4、把、9% Ni鋼標準的化學成分和力學性能并與高純度9% Ni鋼相應的性能進行對比,它們之間的明顯差異。在高壓加氫裂化反應容器中,由于工作溫度高于450℃,殼體材料必須采用2.25CrlMo或3CrlMo低合金抗氧鋼。但這類鋼在450℃以上溫度下長期使用時,會產生回火脆性,使鋼的韌性明顯下降,給加氫反應的安全運行造成隱患。
5、近期的大量研究證明,上列鉻鉬鋼的回火脆性主要起因于鋼中P、Sn、Sb和As等微量雜質。合金元素Si和Mn也對鋼的回火脆性起一定的促進作用。因此必須通過現代的冶金技術,把鋼中的這些雜質降低到最低的水平。目前,許多國外鋼廠已提出嚴格控制鋼中雜質含量的供貨技術條件,F代煉鋼技術能夠達到了最低雜質含量的上限,可大大降低2.25CrlMo和3CrlMo鋼的回火脆性敏感性,其回火脆性指數J低于100,而普通的2.25Cr-lMo鋼的J 指數高達300.
6、由此可見,壓力容器用鋼的純凈化是一種必然的發展趨勢。近幾年來,各類不銹鋼在金屬結構制造業中應用急速增長,其年增長率為5.5%,2003年世界不銹鋼消耗量為2150萬噸,其中我國不銹鋼的用量占54.2%極大部分用于各種壓力容器和管道,包括部分輸油輸氣管線。
7、為滿足各種不同的運行條件下的耐蝕性要求,并改善不同施工條件下的加工性能,近期開發了多種性能優異的不銹鋼,其中包括超級馬氏體不銹鋼、超級鐵素體不銹鋼,鐵素體—奧氏體雙相不銹鋼和超級鐵素體—奧氏體不銹鋼。這些新型不銹鋼的共同特點是超低碳、超低雜質含量、合金元素的匹配更趨優化,不僅顯著提高了其在各種腐蝕介質下的耐蝕性,而且大大改善了焊接性和熱加工性能。在一定的厚度范圍,超級馬氏體不銹鋼焊前可不必預熱,焊后亦無需作熱處理。這對于大型儲罐和跨國海底輸油輸氣管線的建設具有重要的經濟意義。
8、目前已在壓力容器和管道制造中得到實際應用的馬氏體不銹鋼、鐵素體—奧氏體雙相不銹鋼和超級雙相不銹鋼,這些不銹鋼合金系列與常規不銹鋼之間存在較大的差異。壓力容器和管道焊接方法的新發展
9、壓力容器和管道均為全焊結構,焊接工作量相當大,質量要求十分高。焊接工作者總是在不斷探索優質、高效、經濟的焊接方法,并取得了引人注目的進步。以下重點介紹在國內外鍋爐、壓力容器與管道制造業中已得到成功應用的先進高效焊接方法。
二、鍋爐膜式水冷壁管屏雙面脈沖MAG自動焊接生產線
為提高鍋爐熱效率,節省材料費用,大型電站鍋爐式水冷壁管屏均采用光管+扁鋼組焊而成。這種部件的外形尺寸與鍋爐的容量成正比。一臺600MW電站鍋爐膜式水冷壁管屏的拼接縫總長已超過萬米。因此必須采用高效的焊接方法。在上世紀90年代以前,國內外鍋爐爐制造廠大多數采用多頭(6~8頭)埋弧自動焊。在多年的實際生產中發現,這種埋弧焊方法存在一致命的缺點,即埋弧焊只能從單面焊接,管屏焊后不可避免會產生嚴重的撓曲變形。管屏長度愈長,變形愈大,必須經費工的校正工序。不僅提高了生產成本,而且延長了成產周期。因此必須尋求一種更合理的焊接方法。
上世紀80年代后期,日本三菱重工率先開發膜式水冷壁管屏雙面脈沖MAG自動焊新焊接方法及焊接設備,并成功地應用于焊接生產。這種焊接方法在日本俗稱MPM法,其特點是多個MAG焊焊頭從管屏的正反兩面同時進行焊接。焊接過程中,正反兩面焊縫的焊接變形相互抵消。管屏焊接后基本上無撓曲變形。這是一項重大的技術突破。經濟效益顯著。數年后哈爾濱鍋爐廠最先從日本三菱公司引進了這項先進技術和裝備,并在鍋爐膜式壁管屏拼焊生產中得到成功的應用。之后,逐步在我國各大鍋爐制造廠推廣應用,至今已有十多條MPM焊接生產線正常投運。管屏MPM焊接的主要技術關鍵是必須保證正反兩面的焊縫質量,包括焊縫熔深,成形和外形尺寸基本相同。這就要求在仰焊位置的焊接采用特殊的焊接工藝—脈沖電弧MAG焊(富氬混合氣體)。焊接電源和送絲系統應在管屏全長的焊接過程中產生穩定的脈沖噴射過渡。因此必須配用高性能和高質量的脈沖焊接電源和恒速送絲機。這些焊接設備的性能和質量愈高,管屏反面焊縫的質量愈穩定,合格率愈高。實際上,哈鍋廠從日本三菱重工引進的原裝機只配用了晶閘管控制的第二代脈沖MIG/MAG焊電源,送絲機也只是傳統的等速送絲機,管屏反面焊縫的合格率達不到100%,總有一定的返修量,為進一步改進膜式壁管屏MPM焊機的性能,最近國產的管屏MPM焊機配用了第三代微要控制逆變脈沖焊接電源和測速反饋的恒速送絲機,明顯提高了反面焊縫的合格率。
三、安裝監檢工作中主要常見問題
1、進口鍋爐壓力容器制造資料普遍缺少承壓部件強度計算書、熱力計算書、水循環計算書、過熱器和再熱器壁溫計算書;鍋爐無產品制造監檢報告,通過對電廠發送鍋爐安裝監檢意見通知書,供應商已提供部分資料,但部分電廠仍缺少上述資料,我們仍將督促此項工作進行。
2、部分電建公司鍋檢站質保體系運轉不完善,鍋爐壓力容器檢驗人員、無損檢測人員持有電力部門資格證書人員少,無損檢測人員應持有電力系統Ⅱ級及以上資格證,不應只持有勞動系統資格證;焊工資格證不夠全面,持有電力部門焊工考委會簽發的有效證件少,不符合DL612—1996《電力工業鍋爐壓力容器監察規程》和DL5007-92《電力建設施工及驗收技術規范》(火力發電廠焊接篇);個別證件存在超期現象。
四、結語
通過實施安裝監檢,確實提高了工程質量,提高了施工單位管理人員、技術人員和技術工人的素質,對施工單位和建設單位的工作是一個很大的促進。
相關論文